Karcevskij conjecture 1928 and Kawamata conjecture 2002
Sergej Karcevskij declared a conjecture for language's asymmetric structure on the TCLP of the Linguistic Circle of Prague in 1928. I briefly wrote about the conjecture as the following.
.....................................................................................................................................
Prague in 1920s, The Linguistic Circle of Prague and Sergej Karcevskij's paper "Du dualisme asymetrique du signe linguistique"
From Print 2012, Chapter 18
Non-symmetry. It was the very theme that I repeatedly talked on with C. Prague in 1920s. Karcevskij's paper "Du dualisme asymetrique du signe linguistique" that appeared in the magazine TCLP. Absolutely contradicted coexistence between flexibility and solidity, which language keeps on maintaining, by which language continues existing as language. Still now there will exist the everlasting dual contradiction in language. Why can language stay in such solid and such flexible condition like that. Karcevskij proposed the duality that is seemed to be almost absolute contradiction. Sergej Karcevskij's best of papers, for whom C called as the only genius in his last years' book Janua Linguisticae reserata 1994.
Source:
Reference:
Reference 2:
References 3:
References 4:
Reference 5:
[Note, 2 October 2014]
In this Tale, Print 2012, C is CHINO Eiichi who was the very teacher in my life, taught me almost all the heritage of modern linguistics. I first met him in 1969 at university's his Russian class as a student knowing nothing on language study.
Tokyo
23 February 2015
SIL
....................................................................................................................................
This asymmetric duality of linguistic sign presented by Karcevskij has become the prime mover for my study from the latter half of the 20th century being led by my teacher CHINO Eiichi.
But the theme was very hard even to find a clue. The turning point visited after I again learnt mathematics especially algebraic geometry in 1980s.
In 2009 I successively wrote the trial papers of the theme assisted by several results of contemporary mathematics. The papers are the following.
......................................................................................................................................
Sekinan Research Field of Language
Category theoretic mirror symmetry conjecture
When there exists mirror relation between X1 and X2, derived category of X1's coherent sheaf and derived Fukaya category defined from X2's symplectic structure become equivalence.
M. Kontsevich. Homological algebra of mirror symmetry, Vol. 1 of Proceedings of ICM. 1995.
-----------------------------------------------------------------------------------------------------------------------
[Note by TANAKA Akio]
In the near future, symplectic geometry may be written by derived category. If so, complexed image of symplectic geometry's some theorems will become clearer.
References
Mirror Symmetry Conjecture on Rational Curve / Symplectic Language Theory / 27 February 2009
Tokyo
10 May 2016
SRFL Theory
...................................................................................................................................................
In the TODA's book, I received the great hint on Karcevskij's conjecture for language's hard problem.
The hint exists at Kawamata conjecture presented in 2002. The details are the following.
.....................................................................................................................................................
Derived Category Language 2
- TODA Yukinobu. Several problems on derived category of coherent sheaf. Tokyo, 2016.Chapter 6, Derived category of coherent sheaf and birational geometry, page 148, Conjecture 6.43.
- Bridge across mathematics and physics
- Kontsevich's conjecture Category theoretic mirror symmetry conjecture
For TODA's book, refer to the next my short essay.
...........................................................................................................................................
Bridge across mathematics and physics / Revised